Books

51BkCj5PPoL._AC_US436_QL65_

1149397412

Book chapters

  • Y. Ivry, C. Durkan, D. P. Chu & J. F. Scott, “How do Ferroic domains scale down?  The crystal story“. In press, Springer (2014)

Journal Articles

Under preparation/review 2017:

92.  N. Wang, R. Barfoot, M. Butler & C. Durkan, “Nanomechanical fingerprinting of the human hair surface”, under preparation

91. W. Wu et al, “Endogenous pH-sensitive size-adjustable polymeric nano carriers for anticancer applications”, under preparation 

90. Y. Shams, C. Durkan & R. Daly, “Digital non-contact patterning of vertically aligned carbon nanotubes using inkjet printing and laser patterning of iron oxide catalyst ink”, under preparation

89. J. Zhao, X. Wang, G. You, C. Durkan & N. Wang, “The temperature dependence of the deformation behaviour of polycrystalline silver nanowires studied by molecular dynamics simulation”, under preparation

88.  C. Durkan, “Periodic ripples on Thermally-annealed Graphene on Cu(110) – reconstruction or Moiré pattern?”, submitted to Surface Science, June 2017

87.  D. M. Kaimaki, B. E. Smith & C. Durkan, “On the use of Nanomechanical Atomic Force Microscopy to Characterise Oil-Exposed Surfaces”submitted to Energy & Fuels, April 2017

Published:

2016

Fig 186.  D. M. Kaimaki, B. E. Smith, S. V. Filip & C. Durkan,”Characterisation of carbonaceous deposition in oil-exposed surfaces at the nanoscaleNanotechnology (IEEE-NANO), IEEE 16th International conference on, 573(2016)

pfm arXiv

85.  C. Durkan, A. Hershkovitz, D. P. Chu, J. F. Scott & Y. Ivry, “Towards resolving Landauer’s paradox through direct observation of multi scale ferroelastic-ferroelectric interplay” arXiv preprint  arXiv:1608.03890  (2016)

Tianqi

84.  T. Dong, M. Sparkes, C. Durkan & W. O’Neill, “Evaluating femtosecond laser ablation of graphene on SiO2/Si substrateJournal of Laser Applications28, 022202 (2016)

Ximin83.  Z. Zhao, N. Wang, H. Nan, L. Shen, C. Durkan & X. He, “A novel paradigm for the fabrication of highly uniform nanowire arrays using residual stress-induced patterning” Journal of Materials Chemistry C4, 5814 (2016)

2015

graphene Joule82.  C. Durkan & Z. Xiao, “On the failure of graphene devices by Joule heating under current-stressing conditions” Applied Physics Letters107, 243505 (2015)

coccolith81.  N. Wang & C. Durkan, “Nanometer-scale investigations into oil-rich chalk formations” Energy & Fuels29, 6896 (2015)

80. C. Durkan, J. A. Garcia-Melendrez & L. Ding, “On the manipulation of ferroelectric and ferroelastic domains at the nanoscale“,Journal of electronic materials, 44 2230 2015)PFM

2014

KPFMontop179. C. Durkan, N. Wang “Nanometre-scale investigations by atomic force microscopy into the effect of different treatments on the surface structure of hair “, International Journal of Cosmetic Science, 36, 598 (2014)

nanomolelec78. C. Durkan & Q. Zhang, “Towards reproducible, scalable molecular electronic devices“, Applied Physics Letters, 105, 083504 (2014)

SAW77. Y. Ivry, N. Wang & C. Durkan, “High-frequency programmable acoustic wave device realized through ferroelectric domain engineering, Applied Physics Letters 104 133505 (2014)

pinning76. Y. Ivry, C. Durkan, D. Chu & J. F. Scott, “Nano-domain pinning in ferroelastic-ferroelectrics by extended structural defects“, Advanced Functional Materials (2014) DOI: 10.1002/adfm.201304268 

2013

defects75. L. Ding & C. Durkan, “Controllable nanodomain defects in ferroeelctric/ferroelastic biferroic thin films”, Proceedings of IEEE-Nano conference110-113 (2013)

nanoscaleswitching74. A. Garcia-Melendrez & C. Durkan, “Reversible nanoscale switching of polytwin orientation in a ferroelectric thin film induced by a local electric field”  Appl. Phys. Lett, 103 092904 (2013)

MFM173. C. Rawlings & C. Durkan, “The Inverse Problem in Magnetic Force Microscopy-inferring sample magnetization from MFM images“, Nanotechnology, 24 305705 (2013)  Cover image & featured article in print magazine, 2 August 2013

cytochrome72. C. J. Forman, N. Wang, Z-Y. Yang, C. Durkan & P. D. Barker, “Probing the location of displayed cytochrome b562 on Amyloid by Scanning Tunneling Microscopy”  Nanotechnology 24 175102 (2013) 

2012

71. Y. Ivry, J. F. Scott, E. K. H. Salje & C. Durkan, “Nucleation, growth & control of ferroelectric-ferroelastic domains in thin polycrystalline films“, Physical Review B, 86, 205428 (2012)

stiff70. C. Rawlings & C. Durkan, Calibration of cantilevers of arbitrary shape using the phase signal in an atomic force microscope“, Nanotechnology, 23, 485708 (2012)

MFM269. C. Rawlings & C. Durkan, Performing Quantitative MFM measurements on soft magnetic nanostructures“, Nanotechnology,  23, 455701 (2012) 

atomic68. H. S. J. Wong & C. Durkan, “Shifting Atomic Patterns – On the origin of the different atomic patterns of graphite surfaces observed using Scanning Tunnelling Microscopy“, Nanotechnology 23, 185703 (2012)

tunnel167. H. S. J. Wong, X. Feng, K Mullen, N. Chandrasekhar & C. Durkan, “Channel selective tunneling through a nanographene assembly“, Nanotechnology, 23, 095601 (2012)

3dimagehopg66. H. S. J. Wong, X. Feng,  Z. Y. Yang, K Mullen, N. Chandrasekhar & C. Durkan, “Altering the ordering and disordering of a triangular nanographene at room temperature”  Nanotechnology, 23, 015606 (2012, published online 8 December 2011)

65. M. A. Khaderbad, Y. Choi, P. V. Hiralal, A. Aziz, N. Wang, C. Durkan, P. Thiruvenkatanathan, G. A. J. Amaratunga, V. Ramgopal Rao & A. A. Seshia, “Fabrication and electromechanical characterisation of laterally suspended zinc oxide nanowires“,  Nanotechnology, 23, 025501 (2012, published online 14 Dec 2011)

64. H. S. Wong, S. C. Tan, N. Wang & C. Durkan, “Novel Hydrothermally-Grown ZnO Nanowire Tips for Scanning Tunnelling Microscopy and Optoelectronics Applications”, Journal of Nanoscience and Nanotechnology 12, 2394 (2012)

2011

63. Y. Ivry, D. P. Chu, J. F. Scott, E. K. H. Salje  & C. Durkan, “Unexpected Controllable pair structure in ferroelectric nano-domainsNano letters11, 4619 (2011)

62. H. S. J. Wong & C. Durkan, “Imaging confined Charge density oscillations in graphite at room temperature” Physical Review B, 84, 085435 (2011)

61. Y. Ivry, D. P. Chu, J. F. Scott & C. Durkan, “Domains beyond the grain boundary“, Advanced Functional Materials 21, 1827 (2011)

60. H. S. Wong & C. Durkan,Decoupling of Surface Graphene Layer on Graphite  Fourth ICCEE, 433 (2011)


2010

59. C. Rawlings, S. Weigelt, B. Hong, C. H. W. Barnes, M. E. Welland & C. Durkan, “Correlation between shape and stray field in indented-square nanomagnets – an experimental and theoretical study“, Phys. Rev. B. 82 085404 (2010)

58. C. Durkan, Y. Ivry & D. P. Chu, Appl. Phys. Lett, “Response to comment on Nanometre resolution piezo-response force microscopy to study deep submicron ferroelectric and ferroelastic domains“, Appl. Phys. Lett. 97, 046101 (2010)

57. Y. Ivry, N. Wang, D. P. Chu & C. Durkan, “90o domain relaxation in thin ferroelectric/ferroelastic films“, Phys Rev B, 81, 174118 (2010)

56. Y. Ivry, D. P. Chu, J. F. Scott & C. Durkan, “Flux-closure Vortex-like Domain Structures in a ferroelectric thin film“, Phys. Rev. Lett.,104, 207602 (2010)

55. S. Jejurikar, D. Casterman, P. B. Pillai, O. Petrenko, M. M. deSouza, A. Tahroui, C. Durkan & W. I. Milne, “Anomalous n-type electrical behaviour of Pd contacted CNTFET fabricated on small diameter nanotube“, Nanotechnology,  (2010) 21 215202 (2010)

54. Z. Y. Yang, C. Durkan, “Edge and terrace structure of CoTPP on Au(111) investigated by Ultra-High Vacuum Scanning Tunneling Microscopy at Room Temperature” Surface Science, 604, 660 (2010)

53. Y. Ivry, D. P. Chu & C. Durkan, “Bundles of Polytwins as Meta-Elastic Domains in the Thin Polycrystalline Simple Multi-Ferroic System PZT“, Nanotechnology, 21, 065702 (2010)

52. H. S. Wong & C. Durkan, “Unravelling the Rotational Disorder of Graphene Layers in Graphite “, Phys. Rev. B, 81, 045403 (2010)

51. M. Ahmad et al. WCE2010 preface 2, 1 (2010)

50. A. M. Korsunsky et al, WCE2010 preface 1, 1 (2010)


2009


49. H. S. W. Wong, C. Durkan & N. Chandrasekhar, “Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunnelling microscopy”, ACS Nano, 3 (11), 3455 (2009)

48. Y. Ivry, D. P. Chu & C. Durkan, “Nanometer Resolution Piezo-Response Force Microscopy to Study Deep Submicron Ferroelectric and Ferroelastic Domains”, Applied Physics Letters, 94, 162903 (2009)

47. N. Wang, K. Yano, C. Durkan, M. E. Welland, Y. Zhang, H. E. Unalan, M. Mann, K. B. K. Teo, G. A. J. Amaratunga & .  W. I. Milne, “Direct measurement of electron transport through helical poly (ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes“, Nanotechnology, 20, 105201 (2009)

46. D. Casterman, M. M. De Souza, A. Tahraoui, C. Durkan & W. I. Milne, “Role of hybridisation on the Schottky barrier height of carbon nanotube FETs”, Phys. Rev. B, 79, 125407 (2009)


2008

45. K. Yano, C. Durkan & M. E. Welland, “Direct measurement of electron transport through single conducting polymer molecule wired into gaps in single walled carbon nanotubes”, 12th Asian Pacific Confederation of Chemical Engineering Congress (2008)

44. P. A. Midgley, C. Durkan, “The frontiers of microscopy – smaller, faster, sharper” Materials today, Microscopy special issue, 8 (2008)

43. J. H. Ransley, C. Durkan & A. A. Seshia, “Silicon-based depletion layer actuator“, Appl. Phys. Lett., 92, 184103 (2008)


2007



42. J. H. T. Ransley, C. Durkan, & A.A. Seshia, “A depletion layer actuator”Proceedings of Transducers 2007, (2007)

41. F. O. Hadeed & C. Durkan,   “Controlled fabrication of 1-2 nm nanogaps by electromigration in Au and Au/Pd nanowire“, Appl. Phys. Lett. 91, 123120 (2007)

40. W. T. Pong, J. Bendall & C. Durkan, “Observation & investigation of graphite superlattice boundaries by STM“, Surf. Sci., 601, 498 (2007)


2006
 


39. Wing Tat Pong, Colm Durkan, Hongwei Li & Wolfgang Harneit “Strategies for the deposition of free radical organic molecules for scanning-probe microscopy experiments“, J. Scann. Probe Microsc., 1, 55 (2006)

2005


38. W. T. Pong, C. Durkan, “Construction of a UHV-STM for atomic-level characterisation of magnetic surfaces”, Proceedings of the 5th International Conference of the European Society for Precision Engineering and Nanotechnology, 1, 241 (2005)

37. W. T. Pong, C. Durkan “A review & outlook for an anomaly of scanning tunneling microscopy – superlattices on Graphite, J. Phys. D. Applied Physics, 38, 329 (2005)

36. W. T. Pong, C. Durkan “Simple model of electronic density of states of Graphite and its application to the investigation of superlattices, JJAP 44, 5365, (2005)

35. W. T. Pong, J. Bendall, C. Durkan, Observation of large-scale features on Graphite surfaces”  JJAP, 44, 5443 (2005)

2004

34. A. Gademann, I. V. Shvets & C. Durkan, “Study of polarization-dependent energy coupling between a near-field optical probe and mesoscopic metal structures”, J. Appl. Phys., 95, 3988, (2004)

33. C. Durkan, “Detection of single electronic spins by scanning tunnelling microscopy” Contemporary Physics, 45 1, (2004)

2003


32. A. Gademann, C. Durkan & I. V. Shvets, “Optical impedance matching with Scanning Near-field Optical Microscopy”, J. Phys. D: Appl. Phys, 36, 2193 (2003)

31. M. E. Welland, C. Durkan, M. S. M. Saifullah, J. W. Seo, R. Schlittler & G. K. Gimsewski, Science 300, 1236, (2003)

2002


30. C. Durkan, A. Ilie, M. S. M. Saifullah & M. E. Welland, “The mechanics of Nanosprings: stiffness and Young’s modulus of Molybdenum-based nanocrystals”, Appl. Phys. Lett., 80, 4244, (2002)

29. A. Ilie, C. Durkan, W. I. Milne & M. E. Welland, “Surface enhanced Raman spectroscopy as a probe for local modification of carbon films”, Phys. Rev. B.  66 045412, (2002)

28. C. Durkan & M. E. Welland, “Electronic spin detection in Molecules using Scanning Tunnelling Microscopy assisted Electron Spin Resonance”, Appl. Phys. Lett. 80, 458, (2002)

2001


27. D. P. Chu, B. M. McGregor, P. Migliorato, C. Durkan , M. E. Welland, K. Hasegawa & T. Shimoda, “Investigation of PZT resistance dependence on excess lead using a low-frequency small signal ac response”, Proceedings of the 13th International Symposium on Integrated Ferreoelectrics (2001)

26. D. P. Chu, B. M. McGregor, P. Migliorato, C. Durkan , M. E. Welland, K. Hasegawa & T. Shimoda, “Ohmic conductivity and activation energy of Pb1+y (Zr 0.3 Ti 0.7 )O3 thin films”, Proceedings of the 1st International Semiconductor Technology Conference, 416, (2001)

25. D. P. Chu, B. M. McGregor, P. Migliorato, C. Durkan , M. E. Welland, K. Hasegawa & T. Shimoda, “Temperature dependence of the ohmic conductivity and activation energy of Pb1+y (Zr 0.3 Ti 0.7 )O3 thin films“, Appl. Phys. Lett. 79, 518, (2001)

24. M. Lahav, C. Durkan , R. Gabai, E. Katz, I. Willner & M. E. Welland, “Redox activation of a polyaniline-coated cantilever – an electro-driven microdevice”, Angew. Chemie. Int. Ed. 40, 4095, (2001)

23. R. R. Schlittler, J. W. Seo, J. K. Gimzewski, C. Durkan, M. S. M. Saifullah, & M. E. Welland, “Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly”,  Science, 292, 1136 (2001)


2000

 
22. B. Weeks, C. Durkan, H. Kuramochi, M. E. Welland & T. Rayment, ”A High Pressure, High Temperature Scanning Tunnelling Microscope for catalytic studies on surfaces”, Rev. Sci. Inst. 71, 3777 (2000)

21. C. Durkan, M. E. Welland, D. P. Chu & P. Migliorato, “Scaling of piezoelectric properties in the nanometer to micrometer scale” Electronics letters 36, 1538 (2000)

20. T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek & V. Sandoghdar, “A high-contrast topography-free sample for near-field optical microscopy”, Appl. Phys. Lett. 76, 1206 (2000)

19. C. Durkan & M. E. Welland, “Investigations into local ferroelectric properties by atomic force microscopy”, Ultramicroscopy, 82, 141 (2000)

18. C. Durkan, D. P. Chu, M. E. Welland & P. Migliorato, “Investigations into local piezoelectric properties by atomic force microscopy”, Appl. Phys. Lett., 76, 366 (2000)

17. C. Durkan & M. E. Welland, “Size effects in the electrical resistivity of polycrystalline nanowires”, Phys. Rev. B. 61, 14215 (2000)

16. C. Durkan & M. E. Welland, “Nanometer-scale electrical characterisation of artificial mesostructures”, Critical reviews in Solid State and Materials Sciences, 25, 1-28 (2000)

15. C. Durkan & M. E. Welland, “Analysis of failure mechanisms of electrically stressed au nanowires”, Ultramicroscopy, 82, 125 (2000)


1999


14. C. Durkan, M. E. Welland, D. P. Chu & P. Migliorato, “Probing domains at the nanometer scale in piezoelectric thin films”, Phys. Rev. B. 60, 16198 (1999)

13. C. Durkan, M. A. Schneider & M. E. Welland, “Analysis of failure mechanisms in electrically stressed gold nanowires”, J. Appl. Phys. 86, 1280, (1999)

1998


12. K. C. Ng et al, “Applied Physics Reviews” J. Appl. Phys. 83, 1 (1998)

11. I. V. Shvets, C. Durkan & R. Kantor, “Optical transmission lines – Comparison between the optical and the microwave frequency ranges”, Prog. Elec. Res. Symp. 421 (1998)

10. C. Durkan & I. V. Shvets, “Reflection-mode scanning near-field optical microscopy: influence of sample type, tip shape and polarisation of light”, J. Appl. Phys. 83 (3), 1171 (1998)

9. C. Durkan & I. V. Shvets, “Polarisation effects in reflection-mode scanning near-field optical microscopy”, J. Appl. Phys. 83 (4), 1837 (1998)


1997


8. C. Durkan,J. C. Lodder & I. V. Shvets, “Kerr-effect based magneto-optic imaging with sub. 100 nm resolution”, J. Appl. Phys. 81, 5109 (1997)

7. C. Durkan, I. V. Shvets & J. C. Lodder, “Observation of magnetic domains using a reflection-mode scanning near-field optical microscope”, Appl. Phys. Lett., 70 (10), 1323 (1997)

6. C. Durkan & I. V. Shvets, “A method for increasing shear-force detection sensitivity using uncoated fiber tips”, Appl. Opt. 36 8173 (1997)


1996


5. C. Durkan & I. V. Shvets, “Investigation of the physical mechanisms of shear-force imaging”, J. Appl. Phys. 80 (9), 5659 (1996)

4. C. Durkan & I.V. Shvets, “An aperture-type reflection-mode SNOM” in Optics at the nanometer scale,  ed. M. Nieto-Vesperinas & N. Garcia (Kluwer, Dordrecht, 1996) 319, 257

3. C. Durkan & I.V. Shvets, “Study of shear-force as a distance regulation mechanism in scanning near-field optical microscopy”, J. Appl. Phys. 79 (3), 1219 (1996)


1995

2. C. Durkan & I.V. Shvets, “40 nm resolution in reflection-mode SNOM with λ=685 nm”, Ultramicroscopy 61, 227, (1995)

1. C. Durkan & I.V. Shvets, “Reflection-mode Scanning near-field optical microscope” in Photons & Local Probes, Eds. O. Marti and R. Möller, NATO ASI Series E: Applied Sciences vol. 300, (Kluwer, Dordrecht 1995).